Search results for "partial algebras"

showing 4 items of 4 documents

MR2677289 Takakura, Mayumi Noncommutative integration in partial O∗-algebras. Fukuoka Univ. Sci. Rep. 40 (2010), no. 1, 1–20. (Reviewer: Francesco Ts…

2011

Settore MAT/05 - Analisi Matematicapartial algebras noncommutative integration
researchProduct

Extensions of the Noncommutative Integration

2016

In this paper we will continue the analysis undertaken in Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), Bongiorno et al. (Rocky Mt J Math 40(6):1745–1777, 2010), Triolo (Rend Circ Mat Palermo (2) 60(3):409–416, 2011) on the general problem of extending the noncommutative integration in a *-algebra of measurable operators. As in Aiena et al. (Filomat 28(2):263–273, 2014), Bagarello (Stud Math 172(3):289–305, 2006) and Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), the main problem is to represent different types of partial *-algebras into a *-algebra of measurable operators in Segal’s sense, provided that these partial *-algebras posses a sufficient family of pos…

Pure mathematicsApplied MathematicsGeneral problem010102 general mathematicsMeasurable operatorOperator theory01 natural sciencesNoncommutative geometryNoncommutative integrationPartial algebras of operator010101 applied mathematicsComputational MathematicsComputational Theory and MathematicsSettore MAT/05 - Analisi MatematicaComputational Theory and MathematicComputational Mathematic0101 mathematicsAlgebra over a fieldCommutative propertyMathematicsComplex Analysis and Operator Theory
researchProduct

Quasi *-algebras of measurable operators

2009

Non-commutative $L^p$-spaces are shown to constitute examples of a class of Banach quasi *-algebras called CQ*-algebras. For $p\geq 2$ they are also proved to possess a {\em sufficient} family of bounded positive sesquilinear forms satisfying certain invariance properties. CQ *-algebras of measurable operators over a finite von Neumann algebra are also constructed and it is proven that any abstract CQ*-algebra $(\X,\Ao)$ possessing a sufficient family of bounded positive tracial sesquilinear forms can be represented as a CQ*-algebra of this type.

Pure mathematicsClass (set theory)Mathematics::Operator AlgebrasGeneral MathematicsNon-commutative integrationPartial algebras of operatorsFOS: Physical sciencesMathematical Physics (math-ph)Type (model theory)symbols.namesakeVon Neumann algebraSettore MAT/05 - Analisi MatematicaBounded functionsymbolsBanach C*-moduleSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematics
researchProduct

CQ *-algebras of measurable operators

2022

Abstract We study, from a quite general point of view, a CQ*-algebra (X, 𝖀0) possessing a sufficient family of bounded positive tracial sesquilinear forms. Non-commutative L 2-spaces are shown to constitute examples of a class of CQ*-algebras and any abstract CQ*-algebra (X, 𝖀0) possessing a sufficient family of bounded positive tracial sesquilinear forms can be represented as a direct sum of non-commutative L 2-spaces.

Numerical AnalysisControl and OptimizationBanach C*-modules Non commutative integration Partial algebras of operators.Settore MAT/05 - Analisi MatematicaApplied MathematicsAnalysisMoroccan Journal of Pure and Applied Analysis
researchProduct